allIn the question, we are given the following information.
[tex]\begin{gathered} \operatorname{mean}=1.615 \\ \text{Standard deviation = 1.387} \\ \text{Confidence level =99\%} \\ \text{sample = 8} \end{gathered}[/tex]Explanation
We can find the confidence interval using the formula below;
[tex]CI=\bar{x}\pm z.\frac{s}{\sqrt[]{n}}[/tex]CI = confidence interval
x = sample mean
z = confidence level value
s = sample standard deviation
n = sample size
For a 99% confidence interval, the confidence level value is 2.576
Therefore, the CI can be gotten by inserting all the stated values into the formula.
[tex]undefined[/tex]