Part A:
Let x be the length of the ramp.
Drawing the diagram we have
Using the trigonometric function sine, we can solve for the length of the ramp by
[tex]\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \\ \text{given that} \\ \theta=4.8\degree \\ \text{opposite }=36\text{ in} \\ \text{hypotenuse }=x \\ \\ \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin 4.8\degree=\frac{36\text{ in}}{x} \\ x=\frac{36\text{ in}}{\sin 4.8\degree} \\ x\approx430.2214131\text{ in} \end{gathered}[/tex]Convert the resulting length to feet
[tex]430.2214131\text{ in }\Longrightarrow35.851784425\text{ ft}[/tex]Rounding to the nearest whole number, the length of the ramp is 36 feet.
Part B:
Since the resulting ramp is greater than 30 feet, then it is not possible to build just one ramp. Given that the constraints are
[tex]\begin{gathered} x\le30\text{ ft} \\ \\ \text{IF }x=36\text{ ft, THEN} \\ x\le30\text{ ft} \\ 36\text{ ft }\nleq30\text{ ft} \end{gathered}[/tex]