a dilation of 2 (option A)
Explanation:
To determine the transformation, we will use the vertices of PQRS and P'Q'R'S' and compare them
P (1, -2), Q (3, -2), R (2, -1) and S(1, -1)
P' (2, -4) Q' (6, -4), R' (4, -2) and S' (2, -2)
[tex]\begin{gathered} \text{From P to P'} \\ (1,\text{ -2) }\rightarrow\text{ (2, -4)} \\ \lbrack\text{2(1), 2(-2)\rbrack = (2, -4)} \\ \\ \text{From Q to Q'} \\ (3,\text{ -2) }\rightarrow\text{ (6, -4)} \\ \lbrack2(3),\text{ 2(-2)\rbrack = (6, -4)} \end{gathered}[/tex][tex]\begin{gathered} \text{From R to R'} \\ (2,\text{ -1) }\rightarrow\text{ (4, -2)} \\ \lbrack2(2),\text{ 2(-1)\rbrack = (4, -2)} \\ \\ \text{From S to S}^{\prime} \\ (1,\text{ -1) }\rightarrow\text{ (}2,\text{ -2)} \\ \lbrack2(1),\text{ 2(-1)\rbrack = (2, -2)} \end{gathered}[/tex]
Since we multiplied the vertices of PQRS to vertices of P'Q'R'S', the transformation is a dilation of 2 (option A)