Respuesta :

For function one, when we have the linear equation:

[tex]y=mx+b[/tex]

The unit rate will be the "m" value, here we have

[tex]y=\frac{1}{4}x+2[/tex]

Then

[tex]m=\frac{1}{4}[/tex]

That's the unit rate for function one

To find out the unit rate for function two, we must take two points of the graphic, in a generical way they're are

[tex]\begin{gathered} A=(x_a,y_a) \\ B=(x_b,y_b)_{} \end{gathered}[/tex]

The unit rate will be

[tex]m=\frac{y_b-y_a}{x_b-x_a_{}}[/tex]

I'll use the points

[tex]\begin{gathered} A=(3,3) \\ B=(0,1) \end{gathered}[/tex]

Then the unit rate will be

[tex]m=\frac{1-3}{0-(-3)}=\frac{2}{3}[/tex]

Hence the unit rate for function two is m = 2/3