Construct the confidence interval for the population mean μ.c=0.90, x=6.8, o = 0.7, and n = 43A 90% confidence interval for μ is (_,_) (Round to two decimal places as needed.)

Respuesta :

Explanation:

The given values in the question are

[tex]\begin{gathered} CL=0.90 \\ \end{gathered}[/tex]

We will forst of all calculate the margin of error using the formula below

[tex]\begin{gathered} E=z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}} \\ where, \\ \sigma=0.7 \\ n=43 \\ z_{\frac{\alpha}{2}}=1.645(using\text{ z-score tbles for 90\% confidence interval\rparen} \end{gathered}[/tex]

Hence,

The margin of erro will be

[tex]\begin{gathered} E=z_{\frac{\alpha}{2}}\frac{\sigma}{n} \\ E=1.645\times\frac{0.7}{\sqrt{43}} \\ E=0.1756 \end{gathered}[/tex]

Hence,

The lower limit and upper limit will be calculated using the formula below

[tex]\begin{gathered} lowerlimit=\bar{x}-E \\ Upperl\imaginaryI m\imaginaryI t=\bar{x}+E \\ where,\bar{x}=6.8 \end{gathered}[/tex]

By substituitng the values, we will have

[tex]\begin{gathered} lowerl\imaginaryI m\imaginaryI t=\bar{x}-E=6.8-0.1756=6.6244 \\ Upperl\imaginaryI m\imaginaryI t=\bar{x}+E=6.8+0.1756=6.9756 \end{gathered}[/tex]

Hence,

The final answers to to decimal places is given below as

[tex](6.62,6.98)[/tex]