The data in the chart shows the maximum and corresponding resting heart rate of a healthy 20-year old man. Fit a regression line to the data. Then find the coefficientof correlation. Finally, use the regression line to predict the maximum heart rate for a resting heart rate of 41, 56 and 77.resting 50 60 70 80 90maximum 167 170 172 172 174Choose the correct regression line.O A. y = 159.8OB. y = 159.8x + 0.16c. y = 0.16x + 159.8OD. y = 0.16x - 159.8The coefficient of correlation rounded to 3 decimal places is

The data in the chart shows the maximum and corresponding resting heart rate of a healthy 20year old man Fit a regression line to the data Then find the coeffic class=

Respuesta :

C) y=0.16x+ 159.8

and r =0.956

1) Let's plot that trendline and scatterplot with the given data:

2) Now, let's find out the Regression Line equation by making another table for that:

Note that x is for Resting and y for the Maximum. So we can find the slope through this formula:

[tex]m=\frac{n\Sigma xy-\Sigma x\Sigma y}{n\Sigma x^{2}-(\Sigma x)^2}=\frac{5\cdot60010-350\cdot855}{5\cdot25500-(350)^2}=0.16[/tex]

We can now find the linear coefficient (b):

[tex]b=\frac{\Sigma y-m\cdot\Sigma x}{n}=\frac{855-0.16\cdot350}{5}=159.8[/tex]

Hence, the equation for this Regression Line is:

[tex]\hat{y}=0.16x+159.8[/tex]

Letter C.

For the Correlation Coefficient let's make use of another formula plugging into that the given values. The Summation is the last line on the table:

[tex]\begin{gathered} r=\frac{n\Sigma xy-\Sigma x\Sigma y}{\sqrt[]{\lbrack n\Sigma x^{2}-(\Sigma x)^2\rbrack\lbrack n\Sigma y^{2}-(\Sigma y)^2\rbrack}}=\frac{5\cdot60010-350\cdot855}{\sqrt[]{\lbrack5\cdot25500-(350)^2\rbrack\cdot\lbrack5\cdot146233-(855)^2}} \\ r=0.956 \end{gathered}[/tex]

2.3) The predicted maximum heart rate at a resting heart rate of 41 is found out when we plug it into the formula.

y = 016x +159.8 Plug into x

y= 0.16(41) +159.8

y= 166.36 Roundoff to the nearest integer

y=166

2.4) The predicted maximum heart rate at a resting heart rate of 56 is also found out by plugging into x, the value of 56

y = 016x +159.8

y= 0.16 (56) +159.8

y= 168.76 Round off to the nearest integer

y= 169

2.5) And finally, proceeding likewise we can find out the Maximum Heart Rate predicted

y = 016x +159.8

y= 0.16 *(77) +159.8

y = 172.12 Round off to the nearest integer

y= 172

3) Hence, the answers are:

y=0.16x+ 159.8

and r =0.956

Yes. It's a good fit for it reaches the maximum number of points.

Maximum heart rate of 166

Maximum heart rate of 169

Maximum heart rate of 172

Ver imagen WestlynnC749998
Ver imagen WestlynnC749998