Solve .graph the solution, state the interval notation and state the solution & set. 14x-6]

Starting with the inequality:
[tex]\lvert4x-6\rvert\le4[/tex]We have two cases:
Case 1: 4x-6≥0
Since 4x-6≥0, then |4x-6| = 4x-6. Then:
[tex]\begin{gathered} 4x-6\le4 \\ \Rightarrow4x\le10 \\ \Rightarrow x\le\frac{10}{4} \\ \therefore x\le\frac{5}{2} \end{gathered}[/tex]Case 2: 4x-6<0
Since 4x-6<0, then |4x-6| = -4x+6. Then:
[tex]\begin{gathered} -4x+6\le4 \\ \Rightarrow-4x\le-2 \\ \Rightarrow x\ge\frac{-2}{-4} \\ \Rightarrow x\ge\frac{1}{2} \end{gathered}[/tex]The solution set of the inequality is all the numbers x which are greater or equal to 1/2 AND lower or equal to 5/2:
[tex]\frac{1}{2}\le x\le\frac{5}{2}[/tex]The graph of the solution is a number line from 1/2 to 5/2 including the endpoints:
The interval notation of the solution, is:
[tex]x\in\lbrack\frac{1}{2},\frac{5}{2}\rbrack[/tex]The solution set S is:
[tex]S=\lbrace x\in\R|\frac{1}{2}\le x\le\frac{5}{2}\rbrace[/tex]