Find the lateral area of this squarebased pyramid.10ft10 ft[? ]ft2

Answer:
The formula used to calculate the lateral area of the square-based pyramid is given below as
[tex]A_{lateral}=4\times area\text{ of each triangular face}[/tex]Step 1:
The area of a triangle is given below as
[tex]\begin{gathered} A_{triangle}=\frac{1}{2}\times base\times height \\ base=10ft,height=10ft \\ \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} A_{tr\imaginaryI angle}=\frac{1}{2}\times base\times he\imaginaryI ght \\ A_{tr\mathrm{i}angle}=\frac{1}{2}\times10ft\times10ft \\ A_{tr\mathrm{i}angle}=\frac{100ft^2}{2} \\ A_{tr\mathrm{i}angle}=50ft^2 \end{gathered}[/tex]Step 2:
The lateral area will be
[tex]\begin{gathered} A_{lateral}=4\times area\text{ of each tr}\imaginaryI\text{angular face} \\ A_{lateral}=4\times50ft^2 \\ A_{lateral}=200ft^2 \end{gathered}[/tex]Hence,
The final answer = 200ft²