Respuesta :

As given by the question

There are given that the equation

Now,

From the first equation

[tex]5x^2+2=4x[/tex]

Solve the given equation by using quadratic formula to check the solution is imaginary or real.

So,

From the quadratic formula;

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

So,

[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4\times5\times2}}{2\times5} \\ x=\frac{4\pm2\sqrt[]{6}i}{2\times5} \\ x=\frac{2}{5}+i\frac{\sqrt[]{6}}{5},\text{ }\frac{2}{5}+i\frac{\sqrt[]{6}}{5} \end{gathered}[/tex]

Hence, the value of the given equation is shown below:

[tex]x=\frac{2}{5}+i\frac{\sqrt[]{6}}{5},\text{ }\frac{2}{5}+i\frac{\sqrt[]{6}}{5}[/tex]

So, there is No real solution.