Respuesta :

STEP - BY - STEP EXPLANATION

What to find?

Domain

Graph of the function.

Given:

[tex]f(x)=\sqrt{x}+6[/tex]

To solve the given problem, we will follow the steps below:

Step 1

Define the domain of a function

The domain of a function are set of input values for which the function is defined and real.

Step 2

Identify the domain.

In the given function, the function is not real for all set of negative numbers.

Hence, the domain of the function in interval notation is [ 0, ∞)

Step 3

Find the values of y at x=0, 1 and 2

[tex]\begin{gathered} At\text{ x = 0} \\ f(0)=\sqrt{0}+6=6 \\ \\ At\text{ x=1 } \\ f(1)=\sqrt{1}+6=1+6=7 \\ \\ \text{ At x=2} \\ f(2)=\sqrt{2}+6=7.41 \end{gathered}[/tex]

Step 4

Use the above result to form a table.

Step 5

Sketch the graph.

Step 6

Use the graph to determine the range.

The range is the set of values that correspond with the domain.

Hence, the range is [6, ∞)

ANSWER

• Domain : [ 0, ∞)

• The correct option is the, first graph,.

• ,Range, : , [6,, ,∞)

Ver imagen EvoletD258963
Ver imagen EvoletD258963
Ver imagen EvoletD258963