Respuesta :

We need to use the following property of radicals to solve this question:

[tex]\sqrt{a\cdot b}=\sqrt{a}\sqrt{b}[/tex]

The expression given is:

[tex]7\sqrt{3}+10\sqrt{108}[/tex]

If we want to simplify, we need to rewrite the second term in terms of sqrt(3). We know that 108 is divisible by 3 because the sum of its digits is also divisible by 3.

Then:

[tex]\frac{108}{3}=36[/tex]

We can rewrite:

[tex]7\sqrt{3}+10\sqrt{108}=7\sqrt{3}+10\sqrt{36\cdot3}[/tex]

Using the property above:

[tex]7\sqrt{3}+10\sqrt{36}\sqrt{3}=7\sqrt{3}+10\cdot6\sqrt{3}[/tex]

Now, we can simplify:

[tex]7\sqrt{3}+60\sqrt{3}=67\sqrt{3}[/tex]

Thus, the answer is:

[tex]7\sqrt{3}+10\sqrt{108}=67\sqrt{3}[/tex]