Respuesta :

Answer:

The expression is given below as

[tex]\frac{4}{\sqrt{x-2}-\sqrt{x}}[/tex]

Concept:

To rationalize the denominator, we will multiply by the conjugate given below

The conjugate is given below as

[tex]\frac{\sqrt{x-2}+\sqrt{x}}{\sqrt{x-2}+\sqrt{x}}[/tex]

Step 1:

Multiply the expression in the question by the conjugate, we will have

[tex]\frac{4}{\sqrt{x-2}-\sqrt{x}}\times\frac{\sqrt{x-2}+\sqrt{x}}{\sqrt{x-2}+\sqrt{x}}[/tex]

By expanding the brackets, we will have

[tex]\begin{gathered} \frac{4\sqrt{x-2}+4\sqrt{x}}{(\sqrt{x-2)^2-(\sqrt{x})^2}} \\ =\frac{4\sqrt{x-2}+4\sqrt{x}}{x-2-x} \\ =\frac{4\sqrt{x-2}+4\sqrt{x}}{-2} \end{gathered}[/tex]

Step 2:

Factor our the common number and divide

[tex]\begin{gathered} =\frac{4(\sqrt{x-2}+\sqrt{x})}{-2} \\ =-2(\sqrt{x}+\sqrt{x-2)} \end{gathered}[/tex]

Hence,

The final answer is

[tex]\Rightarrow-2(\sqrt{x}+\sqrt{x-2)}[/tex]

OPTION A is the right answer