Respuesta :

The given function is:

[tex]f(x)=\sqrt[3]{x-5}[/tex]

To find the inverse set f(x)=y

[tex]y=\sqrt[3]{x-5}[/tex]

Now, solve for x:

cube both sides of the equation:

[tex]\begin{gathered} y^3=(\sqrt[3]{x-5})^3 \\ \text{Simplify} \\ y^3=x-5 \end{gathered}[/tex]

Add 5 to both sides:

[tex]\begin{gathered} y^3+5=x-5+5 \\ y^3+5=x \end{gathered}[/tex]

Now, switch x and y and reorder terms:

[tex]\begin{gathered} x^3+5=y \\ y=x^3+5 \end{gathered}[/tex]

Replace y by f^-1(x):

[tex]f^{-1}(x)=x^3+5[/tex]

This is the inverse of the function.