The given system of equations are,
[tex]\begin{gathered} -4y-11x=36\ldots\text{.}\mathrm{}(1) \\ -10y+10x=20\ldots\text{.}\mathrm{}(2) \end{gathered}[/tex]Multiplying equation (1) with 5 and equation (2) with 2 and substracting (2) from (1),
[tex]\begin{gathered} (-20y-55x)-(-20y+20x)=180-40 \\ -75x=140 \\ x=\frac{-140}{75} \\ x=\frac{-28}{15} \end{gathered}[/tex]Substituting the value of x in equation (1),
[tex]\begin{gathered} -4y-11\times(\frac{-28}{15})=36 \\ -4y=36-\frac{308}{15} \\ -4y=\frac{540-308}{15} \\ -4y=\frac{232}{15} \\ y=\frac{-58}{15} \end{gathered}[/tex]Thus, the required value of x is -28/15 and y is -58/15.