Respuesta :

Given the lines:

[tex]\begin{gathered} 3x+2y=7 \\ 4x-6y=-8 \end{gathered}[/tex]

We express them in slope-intercept form:

[tex]\begin{gathered} 3x+2y=7\Rightarrow2y=7-3x\Rightarrow y=-\frac{3}{2}x+\frac{7}{2} \\ \\ 4x-6y=-8\Rightarrow6y=4x+8\Rightarrow y=\frac{2}{3}x+\frac{4}{3} \end{gathered}[/tex]

The slopes of these lines are:

[tex]\begin{gathered} m_1=-\frac{3}{2} \\ m_2=\frac{2}{3} \end{gathered}[/tex]

Then:

[tex]m_1\cdot m_2=-1[/tex]

This is the condition for perpendicular lines, so the lines are perpendicular.