Options for the first box:(2x-1)(x+9), (2x+1)(x-9), x+7, 3x(x-9) Options for second box: x-7, 3x(x+7), 3x(2x+1), x+7 Options for the third box: -7, 9, -0.5, 0.5, 0

Options for the first box2x1x9 2x1x9 x7 3xx9 Options for second box x7 3xx7 3x2x1 x7 Options for the third box 7 9 05 05 0 class=

Respuesta :

To determine the value of the quotient of a polynomial function:

[tex]\frac{3x^2-27x}{2x^2+13x-7}\text{ x }\frac{4x^2-1}{3x}[/tex]

The quotient consists of the numerator which represents the first box

while the denominator represents the second box

[tex]\begin{gathered} \frac{3x^2-27x}{2x^2+13x-7}\text{ x}\frac{4x^2-1}{3x} \\ \frac{3x(x-9)}{2x^2+14x-x-7}\text{ x}\frac{(2x)^2-1}{3x} \\ \frac{3x(x-9)}{2x(x_{}+7)-1(x+7)}\text{ x }\frac{(2x-1)(2x+1)}{3x} \\ \frac{3x(x-9)(2x-1)(2x+1)}{(2x-1)(x+7)3x} \end{gathered}[/tex][tex]\frac{(x-9)(2x+1)}{(x+7)}[/tex]

Therefore the simplest form of the quotient has a numerator of (x-9)(2x+1) and a denominator of (x+7)

The expression does exist when x = 0