Respuesta :

The form of quadratic is:

[tex]y=ax^2+bx+c[/tex]

Since (0,6) is given, we know c = 6, thus we have:

[tex]\begin{gathered} y=ax^2+bx+c \\ ax^2+bx+6 \end{gathered}[/tex]

Point 2 is (2,8), replace x and y and find equation:

[tex]\begin{gathered} y=ax^2+bx+6 \\ 8=a(2)^2+b(2)+6 \\ 8-6=4a+2b \\ 4a+2b=2 \end{gathered}[/tex]

Putting point 2 (3,0), we have:

[tex]\begin{gathered} y=ax^2+bx+6 \\ 0=a(3)^2+b(3)+6 \\ 9a+3b=-6 \end{gathered}[/tex]

Solving the 2 simulatenous equations for a and b, we get:

a = -3

b = 7

Now u have all the values, a, b, and c.

Just put it in the general form of parabola :

[tex]y=-3x^2+7x+6[/tex]

y = -3x^2 + 7x + 6