graph the polygon and it’s image after a dilation centered C with scale factor k

We plot and join the given ordered pairs.
The formula of dilation when it is not centred at the origin is:
[tex]\begin{gathered} (x,y)\rightarrow(k(x-a)+a,k(y-b)+b) \\ \text{ Where} \\ k\text{ is the scale factor} \\ (a,b)\text{ is the center of the dilation} \end{gathered}[/tex]Then, we can find the coordinates of the image:
[tex]\begin{gathered} k=\frac{2}{3} \\ (a,b)=C(-2,4) \\ T(7,1)\operatorname{\rightarrow}T^{\prime}(\frac{2}{3}(7-(-2))-2,\frac{2}{3}(1-4)+4) \\ T(7,1)\operatorname{\rightarrow}T^{\prime}(\frac{2}{3}(7+2)-2,\frac{2}{3}(-3)+4) \\ T(7,1)\operatorname{\rightarrow}T^{\prime}(\frac{2}{3}(9)-2,\frac{2}{3}(-3)+4) \\ T(7,1)\operatorname{\rightarrow}T^{\prime}(6-2,-2+4) \\ T(7,1)\operatorname{\rightarrow}T^{\prime}(4,2) \end{gathered}[/tex][tex]\begin{gathered} k=\frac{2}{3} \\ (a,b)=C(-2,4) \\ U(4,4)\operatorname{\rightarrow}U^{\prime}(\frac{2}{3}(4-(-2))-2,\frac{2}{3}(4-4)+4) \\ U(4,4)\operatorname{\rightarrow}U^{\prime}(\frac{2}{3}(4+2)-2,\frac{2}{3}(4-4)+4) \\ U(4,4)\operatorname{\rightarrow}U^{\prime}(\frac{2}{3}(6)-2,\frac{2}{3}(0)+4) \\ U(4,4)\operatorname{\rightarrow}U^{\prime}(4-2,0+4) \\ U(4,4)\operatorname{\rightarrow}U^{\prime}(2,4) \end{gathered}[/tex][tex]\begin{gathered} k=\frac{2}{3} \\ (a,b)=C(-2,4) \\ V(1,13)\operatorname{\rightarrow}V^{\prime}(\frac{2}{3}(1-(-2))-2,\frac{2}{3}(13-4)+4) \\ V(1,13)\operatorname{\rightarrow}V^{\prime}(\frac{2}{3}(1+2)-2,\frac{2}{3}(13-4)+4) \\ V(1,13)\operatorname{\rightarrow}V^{\prime}(\frac{2}{3}(3)-2,\frac{2}{3}(9)+4) \\ V(1,13)\operatorname{\rightarrow}V^{\prime}(2-2,6+4) \\ V(1,13)\operatorname{\rightarrow}V^{\prime}(0,10) \end{gathered}[/tex][tex][/tex]