Respuesta :

Differentiate using the product rule:

g. We take out the constant:

[tex]4\frac{dy}{dx}\left(x\left(3x-2\right)^5\right)[/tex]

So:

[tex]=4\left(\frac{d}{dx}\left(x\right)\left(3x-2\right)^5+\frac{d}{dx}\left(\left(3x-2\right)^5\right)x\right)[/tex]

Now

[tex]\begin{gathered} \frac{d}{dx}\left(x\right)=1 \\ \frac{d}{dx}\left(\left(3x-2\right)^5\right)=5(3x-2)^4\cdot\frac{d}{dx}\left(\left(3x-2\right)^5\right)=5\left(3x-2\right)^4\cdot\:3=15\left(3x-2\right)^4 \end{gathered}[/tex]

Substituting the derivatives found:

[tex]=4\left(1\cdot\left(3x-2\right)^5+15\left(3x-2\right)^4x\right)[/tex]

Simplify:

[tex]=4\left(\left(3x-2\right)^5+15x\left(3x-2\right)^4\right)[/tex]

Answer:

[tex]=4\left(\left(3x-2\right)^5+15x\left(3x-2\right)^4\right)[/tex]