let E be the total outcomes
The standard number wheel contains 36 numbers and two spaces marked
The total sample space will be 38
n(E)=38
let B be the number of blacck, R be the nunber of red and G be the number of green
Number of Black, n(B) = 18
Number of Red, n(R) =18
Number of green , n(G)=2
Let the number of Black and red be
the Probability of an event is given n(RnB)=9
[tex]\frac{\text{reuire outcome }}{total\text{ outcome}}[/tex]Probability that the balls lands on an even number or a black number is given by
[tex]\begin{gathered} P(R)\text{ +P(B) -P(R n B)} \\ \end{gathered}[/tex][tex]\begin{gathered} P(R)=\frac{n(R)}{n(E)}=\frac{18}{38} \\ P(B)=\frac{n(B)}{n(E)}=\frac{18}{38} \\ P(\text{RnB)}=\frac{n(\text{RnB)}}{n(E)}=\frac{9}{38} \end{gathered}[/tex]Therefore we have
[tex]\begin{gathered} \frac{18}{38}+\frac{18}{38}-\frac{9}{38} \\ \frac{18+18-9}{38}=\frac{27}{38} \end{gathered}[/tex]Therefore the probability that the balls lands on an even number or a black number is 27/38 or 0.71