Respuesta :

Given:

The function is

[tex]f(x)=\frac{\sqrt{x-2}}{6}[/tex]

Required:

Find the inverse of the function.

Explanation:

The given function is:

[tex]f(x)=\frac{\sqrt{x-2}}{6}[/tex]

Put

[tex]f(x)=y[/tex][tex]y=\frac{\sqrt{x-2}}{6}[/tex]

Interchange x and y.

[tex]x=\frac{\sqrt{y-2}}{6}[/tex]

Take the square on both sides.

[tex]x^2=\frac{y-2}{36}[/tex][tex]\begin{gathered} 36x^2=y-2 \\ y=36x^2+2 \end{gathered}[/tex]

Substitute

[tex]y=f^{-1}(x)[/tex][tex]f^{-1}(x)=36x^2+2[/tex]

Final Answer:

Option A is the correct answer.