Respuesta :

Solution:

Given the functions below;

[tex]f\left(x\right)=\log_2\left(x\right)\text{ and }g\left(x\right)=2^x[/tex]

Evaluating (g - f)(12) gives;

[tex]\begin{gathered} \left(g-f\right)\left(x\right)=g\left(x\right)-f\left(x\right) \\ =g\left(12\right)-f\left(12\right) \\ =2^{12}-\log_212 \\ =4096-\log_212=4092.41503=4092.42\text{ \lparen two decimal places\rparen} \end{gathered}[/tex]

Hence, the answer is

[tex]\begin{equation*} 4092.42\text{ \lparen two decimal places\rparen} \end{equation*}[/tex]