Respuesta :

Given:

In the given diagram,

[tex]PD=3,DC=2,\text{ }and\text{ }BC=4[/tex]

To check:

AC a tangent line or not.

Explanation:

In a triangle PBC,

[tex]\begin{gathered} PB=3\text{ }(Since\text{ }PB=PD=radius) \\ BC=4 \\ PC=3+2=5 \end{gathered}[/tex]

Let us check the Pythagoras theorem,

[tex]\begin{gathered} PC^2=PB^2+BC^2 \\ 5^2=3^2+4^2 \\ 25=9+16 \\ 25=25 \end{gathered}[/tex]

It satisfies the theorem.

Therefore, the triangle PBC is a right-angle triangle.

That is, PB is perpendicular to AC.

So, AC is a tangent line.

Final answer:

Yes. AC is a tangent line.