Respuesta :

a)

The ratio test states that

[tex]\lim _{n\to\infty}\mleft|\frac{a_{n+1}}{a_n}\mright|=L[/tex]

If

• L > 1, the series diverges

• L < 1, the series converges absolutely

• L = 1, inconclusive.

Then let's apply the radio test:

[tex]a_n=\frac{2n!}{2^{2n}}\rightarrow a_{n+1}=\frac{2(n+1)!}{2^{2(n+1)}}[/tex]

Then

[tex]\lim _{n\to\infty}\mleft|\frac{a_{n+1}}{a_n}\mright|=\lim _{n\to\infty}\frac{2(n+1)!}{2^{2(n+1)}}\cdot\frac{2^{2n}}{2n!}[/tex]

Now we must simplify the expression

[tex]\begin{gathered} \lim _{n\to\infty}\mleft|\frac{a_{n+1}}{a_n}\mright|=\lim _{n\to\infty}\frac{2(n+1)!}{2n!}\cdot\frac{2^{2n}}{2^{2(n+1)}} \\ \\ \lim _{n\to\infty}|\frac{a_{n+1}}{a_n}|=\lim _{n\to\infty}\frac{(n+1)!}{n!}\cdot\frac{2^{2n}}{2^{2n}\cdot2^2} \\ \\ \lim _{n\to\infty}|\frac{a_{n+1}}{a_n}|=\lim _{n\to\infty}\frac{n+1}{4} \end{gathered}[/tex]

Then, we have

[tex]\lim _{n\to\infty}\mleft|\frac{a_{n+1}}{a_n}\mright|=\lim _{n\to\infty}\frac{n+1}{4}=+\infty[/tex]

The value of r from the ratio test is

[tex]r=+\infty[/tex]

b)

If r > 1, then we can say that the series diverges.