Respuesta :

Answer:

The slope of line B = 5/7

Explanations:

Line A passes through the points (1, 10) and (6, 3)

The slope of a line passing though the points (x₁, y₁) and (x₂, y₂) is given by the formula:

[tex]m\text{ = }\frac{y_2-y_1}{x_2-x_1}[/tex][tex]\begin{gathered} \text{Let the slope of the line A passing thorugh the points (1,10) and (6,3) be m}_A \\ _{} \end{gathered}[/tex]

[tex]\begin{gathered} m_A=\text{ }\frac{3-10}{6-1} \\ m_A=\text{ }\frac{-7}{5} \end{gathered}[/tex]

When two lines are perpendicular, the slope of one is the negative inverse of the other.

Since line B is perpendicular to line A:

[tex]\begin{gathered} m_B=\text{ }\frac{-1}{m_A} \\ m_B=\text{ -1 }\div\text{ }\frac{-7}{5} \\ m_B=\text{ -1 }\times\frac{-5}{7} \\ m_B=\text{ }\frac{5}{7} \end{gathered}[/tex]

The slope of line B = 5/7