Respuesta :

Given the two functions:

[tex]\begin{gathered} R(x)=2\sqrt[]{x} \\ S(x)=\sqrt[]{x} \end{gathered}[/tex]

We need to find (RoS)(4). THis is the functional composition. We take S(x) and put it into R(x) and then put "4" into that composed function. Shown below is the process:

[tex](RoS)(x)=2\sqrt[]{\sqrt[]{x}}[/tex]

When we plug in "4", into "x", we have:

[tex]\begin{gathered} (RoS)(x)=2\sqrt[]{\sqrt[]{x}} \\ (RoS)(4)=2\sqrt[]{\sqrt[]{4}} \\ =2\sqrt[]{2} \end{gathered}[/tex]