Respuesta :

We have the fraction

[tex]\frac{7}{4}[/tex]

We want to rewrite it as

[tex]\frac{x}{20}[/tex]

Where x is a number that we don't know, but it will turn the fraction equivalent, then we can say that

[tex]\frac{7}{4}=\frac{x}{20}[/tex]

We can do a cross multiplication and solve it for x

[tex]\begin{gathered} 4x=7\cdot20 \\ \\ x=\frac{7\cdot20}{4} \end{gathered}[/tex]

Then in fact, to discover the new numerator we must do

[tex]\text{ new numerator = }\frac{\text{ old numerator x LCD}}{\text{ old denominator}}[/tex]

Let's do it then!

[tex]\begin{gathered} \text{ new numerator =}\frac{7\cdot20}{4} \\ \\ \text{ new numerator }=35 \end{gathered}[/tex]

Then

[tex]\frac{7}{4}=\frac{35}{20}[/tex]

The equivalent fraction is 35/20

Now for the second question, we can use the logic

[tex]\begin{gathered} \text{ new numerator = }\frac{\text{ 9 x 20}}{10} \\ \\ \text{new numerator = {}18} \end{gathered}[/tex]

The equivalent fraction is

[tex]\frac{9}{10}=\frac{18}{20}[/tex]

Final answers:

[tex]\begin{gathered} \frac{7}{4}=\frac{35}{20} \\ \\ \frac{9}{10}=\frac{18}{20} \end{gathered}[/tex]