assume that the line that appears to. e the diameter is the diameter what is the. value of x

Therefore,
[tex]2\times<\text{ABC = }92^0[/tex]Dividing both sides by 2, we have
[tex]\frac{2\timesthus.[tex]<\text{ABC = }46^0[/tex]Hence,
[tex]x+46+90=180\text{ (the sum of angles in a triangle is 180 degrees}[/tex][tex]\begin{gathered} x+136^0=180^0 \\ \text{ Subtracting 136}^0\text{ from both sides, we have} \\ x+136^0-136^0=180^0-136^0 \end{gathered}[/tex][tex]\begin{gathered} \text{ Thus} \\ x=44^0 \end{gathered}[/tex]