Given:
[tex]\begin{gathered} U=\left\{1,2,3,4,5,6,7,8,9,10\right\} \\ A=\left\{1,3,5,7,9\right\} \\ B=\left\{1,2,3,9,10\right\} \end{gathered}[/tex]To find:
[tex]A\cap B[/tex]Explanation:
We know that,
The intersection of two sets A and B is the set of all common elements in sets A and B.
Therefore, we write it in the roaster form,
[tex]\begin{gathered} A\cap B=\left\{1,3,5,7,9\right\}\cap\left\{1,2,3,9,10\right\} \\ A\cap B=\lbrace1,3,9\rbrace \end{gathered}[/tex]Final answer:
The roster notation is,
[tex]A\cap B=\lbrace1,3,9\rbrace[/tex]