Respuesta :

Given:

[tex]f\mleft(x\mright)=2^{x+4}[/tex]

A) Graph the function:

Let us find the intercepts.

When x=0, we get

[tex]\begin{gathered} f\mleft(0\mright)=2^4 \\ f(0)=16 \end{gathered}[/tex]

Since it is an exponential function.

So, the graph is,

B) To find the domain:

According to the graph,

The domain is,

[tex](-\infty,\infty)[/tex]

C) To find the range:

According to the graph,

The range is,

[tex](0,\infty)[/tex]

D) To find the asymptote:

The line y=L is a horizontal asymptote of the function y=f(x), if either

[tex]\begin{gathered} \lim _{x\to\infty}f\mleft(x\mright)=L\text{ (or)} \\ \lim _{x\to-\infty}f\mleft(x\mright)=L \end{gathered}[/tex]

And L is finite.

Here,

[tex]\begin{gathered} \lim _{x\to\infty}f(x)=2^{\infty+4} \\ =\infty \\ \lim _{x\to-\infty}f(x)=2^{-\infty+4} \\ =0 \end{gathered}[/tex]

Thus, the horizontal asymptote is y=0.

E) To find the y-intercept:

According to the graph,

When x=0, then f(x)=16.

So,

The y-intercept is 16.

Ver imagen DoraO220286