Answer:
y = 3(e)^(-0.69x)
Explanation:
Taking into account the following property
[tex]a=e^{\ln a}[/tex]We can replace (0.5)^x by
[tex]\begin{gathered} 0.5^x=e^{\ln \text{ (0.5\textasciicircum{}x)}} \\ 0.5^x=e^{x\ln (0.5)} \end{gathered}[/tex]So, now we can rewrite the function as
[tex]\begin{gathered} y=3e^{x\ln (0.5)} \\ y=3e^{x(-0.69)} \\ y=3e^{-0.69x} \end{gathered}[/tex]Therefore, the answer is
y = 3(e)^(-0.69x)