Respuesta :

Answer:

y = 3(e)^(-0.69x)

Explanation:

Taking into account the following property

[tex]a=e^{\ln a}[/tex]

We can replace (0.5)^x by

[tex]\begin{gathered} 0.5^x=e^{\ln \text{ (0.5\textasciicircum{}x)}} \\ 0.5^x=e^{x\ln (0.5)} \end{gathered}[/tex]

So, now we can rewrite the function as

[tex]\begin{gathered} y=3e^{x\ln (0.5)} \\ y=3e^{x(-0.69)} \\ y=3e^{-0.69x} \end{gathered}[/tex]

Therefore, the answer is

y = 3(e)^(-0.69x)