Respuesta :

Using the trigonometric functions in a right triangle,

[tex]\begin{gathered} \cos =\frac{adjacent}{\text{hypotenuse}} \\ \tan =\frac{opposite}{\text{adjacent}} \\ \sin =\frac{opposite}{\text{hypotenuse}} \end{gathered}[/tex]

The right triangle can be resketched to get the third unknown angle;

[tex]\begin{gathered} 90+35+\theta=180^0\text{ (sum of angles in a triangle)} \\ 125^0+\theta=180^0 \\ \theta=180-125 \\ \theta=55^0 \end{gathered}[/tex]

Considering angle 55 degrees as a reference,

side y is the adjacent and side 20 is the hypotenuse.

Thus, the trigonometric identity that combines adjacent and hypotenuse is cosine.

Therefore,

[tex]\begin{gathered} \cos =\frac{\text{adjacent}}{\text{hypotenuse}} \\ \cos (55)=\frac{y}{20} \end{gathered}[/tex]

Thus, the first option is correct.

Ver imagen RoyaS646170