Respuesta :

Given

The derivative is given as

[tex]f^{\prime}(x)=4x+3[/tex]

and f(0)=-9.

Explanation

To find the function f(x),

[tex]dy=(4x+3)dx[/tex]

Take the integral,

[tex]\begin{gathered} \int dy=\int(4x+3)dx \\ y=\frac{4x^2}{2}+3x+C \\ y=2x^2+3x+C \\ f(x)=2x^2+3x+C \end{gathered}[/tex]

It is given that f(0) = - 9 .

[tex]\begin{gathered} -9=2(0^2)+3(0)+C \\ C=-9 \end{gathered}[/tex]

Then the function is determined as

[tex]f(x)=2x^2+3x-9[/tex]

Answer

Hence the function f(x) is

[tex]2x^2+3x-9[/tex]