Respuesta :

Since the point in the second quadrant is (-0.74, 0.67), then

sin x will be the value of the y-coordinate

[tex]\sin x=0.67[/tex]

cos x will be the value of the x-coordinate

[tex]\cos x=-0.74[/tex]

Since the radius of the unit circle is 1, then

tan x will be y-coordinat/x-coordinate

[tex]\begin{gathered} \tan x=\frac{0.67}{-0.74} \\ \tan x=-\frac{67}{74} \\ \tan x=-0.91 \end{gathered}[/tex]

Since the point on the unit circle for y is (0.53, 0.85), then

tan y will be y-coordinate/x-coordinate

[tex]\begin{gathered} \tan y=\frac{0.85}{0.53} \\ \tan y=\frac{85}{53} \\ \tan y=1.60 \end{gathered}[/tex]