Respuesta :

Given:

[tex]3.1\bar{\text{ 1}}[/tex]

Required:

We need to find the equivalent rational number of the given expression.

Explanation:

Recall that In a decimal number, a bar over one or more consecutive digits means that the pattern of digits under the bar repeats without end.

The given number can be written as follows.

[tex]3.1\bar{\text{ 1}}=3.1111111111...[/tex]

Conisder the individual options.

1).

[tex]\frac{22}{9}[/tex]

Divide 22 by 9.

[tex]\frac{22}{9}=2.44444...=2.4\bar{\text{ 4}}.[/tex]

[tex]2.4\bar{\text{ 4}}\ne3.1\bar{\text{ 1}}[/tex]

2.

[tex]\frac{24}{9}[/tex]

Divide 24 by 9.

[tex]\frac{24}{9}=2.666666..=2.6\bar{\text{ 6}}.[/tex]

[tex]2.6\bar{\text{ 6}}\ne3.1\bar{\text{ 1}}[/tex]

3.

[tex]\frac{26}{9}[/tex]

Divide 26 by 9.

[tex]\frac{26}{9}=2.88888..=2.8\text{ }\bar{8}.[/tex]

[tex]2.8\text{ }\bar{8}\ne3.1\text{ }\bar{1}[/tex]

4.