Respuesta :

[tex]YZ=35.3[/tex]

1) Let's sketch this out so that we can better understand it

2) Reminding ourselves of the metric relations of a right triangle we can write out the following:

[tex]\begin{gathered} h^2=m\cdot n \\ YO^2=26\cdot12 \\ YO=\sqrt[]{312} \\ OZ=\sqrt[]{26.12} \\ OZ=\sqrt[]{312} \\ YZ=\sqrt[]{312}+\sqrt[]{312} \\ YZ=2\sqrt[]{312} \\ YZ=35.3 \end{gathered}[/tex]

Note that the radius intersects that chord with a 90º angle so it bisects that chord.

Ver imagen NolenN585039