Respuesta :

Explanation:

The expression that we have is:

[tex]\frac{(x-1)^2}{x^2-x-12}\cdot\frac{x^2+x-6}{x^2-6x+5}[/tex]

And we need to find the equivalent expression.

Step 1. First, we expand the term (x-1)^2 as follows:

[tex]\frac{(x-1)(x-1)}{x^2-x-12}\cdot\frac{x^{2}+x-6}{x^{2}-6x+5}[/tex]

Then, we need to factor the rest of the three quadratic expressions.

Let's review the general process:

-For quadratic expressions of the form:

[tex]x^2+bx+c[/tex]

We factor it by finding two numbers that when you add them the result is b and when you multiply them the result is c.

Step 2. Factoring the three quadratic expressions:

[tex]x^2-x-12=(x-4)(x+3)[/tex][tex]x^2+x-6=(x-2)(x+3)[/tex][tex]x^2-6x+5=(x-5)(x-1)[/tex]

Step 3. Using the factored expressions, the result is:

We cancel the terms that are both in the numerator and in the denominator:

And we are left only with the following terms:

[tex]\frac{(x-1)(x-2)}{(x-4)(x-5)}[/tex]

Step 4. Multiplying the terms to find the final expression:

[tex]\frac{(x-1)(x-2)}{(x-4)(x-5)}=\frac{x^2-2x-x+2}{x^2-5x-4x+20}[/tex]

Combining like terms:

[tex]\frac{x^2-3x+2}{x^2-9x+20}[/tex]

This is shown in option A.

Answer:

[tex]\frac{x^{2}-3x+2}{x^{2}-9x+20}[/tex]

Ver imagen ThymeB721241
Ver imagen ThymeB721241