We have the next polynomial
[tex]\mleft(4t-7\mright)^2\mleft(2t+1\mright)-\mleft(4t^2+2t+11\mright)[/tex]
First, we solve the square
[tex](16t^2-56t+49)(2t+1)-\mleft(4t^2+2t+11\mright)[/tex]
Then we do the product of polynomials
[tex]32t^3-112t^2+98t+16t^2-56t+49-4t^2-2t-11[/tex]
Then we sum like terms
[tex]\begin{gathered} 32t^3-112t^2+16t^2-4t^2+98t-2t-56t+49-11 \\ \end{gathered}[/tex][tex]\begin{gathered} 32t^3-100t^2+40t+38 \\ \end{gathered}[/tex]
ANSWER
[tex]32t^3-100t^2+40t+38[/tex]
The degree of the polynomial is 3