Triangle ABC has vertices A(-2,2), B(-1,-3), and C(4,0) . Find the coordinates of the vertices of A', B' and C', the image of ABC after the transformation rx-axis

Answer:
A'(-2,-2),B'(-1,3),C'(4,0)
Explanation:
Given triangle ABC with vertices as defined below:
[tex]A\mleft(-2,2\mright),B\mleft(-1,-3\mright),\; C\mleft(4,0\mright)[/tex]The transformation 'rx-axis' is a reflection over the x-axis.
When you reflect a point (x,y) over the x-axis, the transformation is given below:
[tex]r_{x-\text{axis}}\colon(x,y)\to(x,-y)[/tex]That is, the x coordinate remains the same but the y-coordinate changes to its opposite.
Therefore, the coordinates of the vertices of A', B' and C' will be:
[tex]A^{\prime}\mleft(-2,-2\mright),B^{\prime}\mleft(-1,3\mright),C^{\prime}\mleft(4,0\mright)[/tex]