Solution
Step 1
We first find the z score
[tex]\begin{gathered} Z=\text{ }\frac{x-\mu}{\sigma} \\ \text{where }x\text{ is the observed value} \\ \mu\text{ is mean of the sample} \\ \sigma\text{ is the standard deviation of the sample} \\ Z=\text{ }\frac{224.6-210.3}{31.9} \\ \\ Z=\frac{14.3}{31.9} \\ Z=0.448 \end{gathered}[/tex]Step 2
P-value from Z-Table:
P(x>224.6) = 1 - P(x<224.6) = 0.3267 Four decimal places
Part B
[tex]\begin{gathered} Z=\text{ }\frac{x-\mu}{\frac{\sigma}{\sqrt[]{n}}} \\ Z=\frac{224.6\text{ - 210.3}}{\frac{31.9}{\sqrt[]{24}}} \\ Z=\frac{14.3}{6.5116} \\ Z=2.196 \end{gathered}[/tex]P(x>Z) = 0.0140 Four decimal places