Using a table of values, approximate the solution to the equation below to the nearest fourth of a unit.2√x = 1 + 2 = 7³213x-O A.OB.SOC.O D.≈ 2.75x 4.75≈ 2.5x≈ 3kResetNext

Solution:
Given the equation:
[tex]2\sqrt{x-1}+2=\frac{3x}{x-1}[/tex]To find the approximate solution to the equation, we have
step 1: Multiply both sides by (x-1).
Thus
[tex]\begin{gathered} (x-1)(2\sqrt{x-1}+2)=(x-1)\frac{3x}{(x-1)} \\ \Rightarrow(x-1)(2\sqrt{x-1}+2)=3x \end{gathered}[/tex]step 2: Open parentheses.
Thus, we have
[tex]\begin{gathered} 2x\sqrt{x-1}+2x-2\sqrt{x-1}-2=3x \\ \end{gathered}[/tex]step 3: Factor out the common terms.
Thus,
[tex][/tex]