Using a table of values, approximate the solution to the equation below to the nearest fourth of a unit.2√x = 1 + 2 = 7³213x-O A.OB.SOC.O D.≈ 2.75x 4.75≈ 2.5x≈ 3kResetNext

Using a table of values approximate the solution to the equation below to the nearest fourth of a unit2x 1 2 7213xO AOBSOCO D 275x 475 25x 3kResetNext class=

Respuesta :

Solution:

Given the equation:

[tex]2\sqrt{x-1}+2=\frac{3x}{x-1}[/tex]

To find the approximate solution to the equation, we have

step 1: Multiply both sides by (x-1).

Thus

[tex]\begin{gathered} (x-1)(2\sqrt{x-1}+2)=(x-1)\frac{3x}{(x-1)} \\ \Rightarrow(x-1)(2\sqrt{x-1}+2)=3x \end{gathered}[/tex]

step 2: Open parentheses.

Thus, we have

[tex]\begin{gathered} 2x\sqrt{x-1}+2x-2\sqrt{x-1}-2=3x \\ \end{gathered}[/tex]

step 3: Factor out the common terms.

Thus,

[tex][/tex]