Respuesta :

We know that

• BD bisects the angle ABC.

Remember that a bisector divides the angle in two equal parts, that means

[tex]m\angle ABD=m\angle DBC[/tex]

Where,

[tex]m\angle ABD=8x+35,m\angle DBC=11x+23[/tex]

Replacing these expressions we have

[tex]8x+35=11x+23[/tex]

Now, we solve for x, first, we subtract -11x on each side

[tex]\begin{gathered} 8x+35-11x=11x+23-11x \\ -3x+35=23 \end{gathered}[/tex]

Then, we subtract 35 on each side

[tex]\begin{gathered} -3x+35-35=23-35 \\ -3x=-12 \end{gathered}[/tex]

At last, we divide the equation by -3

[tex]\begin{gathered} \frac{-3x}{-3}=\frac{-12}{-3} \\ x=4 \end{gathered}[/tex]

We use this value to find each angle.

[tex]undefined[/tex]