Determine whether the sequence converges or diverges. How do you know if it converges or diverges? If it converges, give the limit.{ 5nāˆ’1 / n+1 }

Determine whether the sequence converges or diverges How do you know if it converges or diverges If it converges give the limit 5n1 n1 class=

Respuesta :

Given the sequence,

[tex](\frac{5n-1}{n+1})[/tex]

We can find the solution to the question below.

Explanation

1) The sequence converges.

2) This is because the limit of the sequence exists as nā†’āˆž.

We can find the limit below.

[tex]\begin{gathered} \lim_{n\to\infty\:}\left(\frac{5n-1}{n+1}\right) \\ divide\text{ the numerator and denominator by n} \\ \lim_{n\to\infty\:}\left(\frac{5-\frac{1}{n}}{1+\frac{1}{n}}\right) \\ Recall;\lim_{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim_{x\to a}f\left(x\right)}{\lim_{x\to a}g\left(x\right)},\:\quad\lim_{x\to a}g\left(x\right)0 \\ \frac{\lim_{n\to\infty\:}\left(5-\frac{1}{x}\right)}{\lim_{n\to\infty\:}\left(1+\frac{1}{x}\right)}=\frac{5}{1}=5 \end{gathered}[/tex]

Answer: The limit of the sequence is 5