Respuesta :

ANSWER:

0.27 meters

STEP-BY-STEP EXPLANATION:

We have that the torque in this situation is given as follows:

[tex]\begin{gathered} \tau=F\cdot d \\ \text{ we solve for d:} \\ d=\frac{\tau}{F} \end{gathered}[/tex]

We replace and calculate the distance:

[tex]\begin{gathered} d=\frac{50.4}{185} \\ d=0.27\text{ m} \end{gathered}[/tex]

Distance is 0.27 meters