ANSWER:
104
STEP-BY-STEP EXPLANATION:
Given:
Standard deviation (σ) = 700
Confidence level = 95%
Mean error (Eμ) = 135
We have for a confidence level of 95%:
[tex]\begin{gathered} \alpha=100\%-95\%=5\%=0.05 \\ \\ \alpha\text{/2}=\frac{0.05}{2}=0.025 \\ \\ \text{ The corresponding Z value for \alpha/2 = 0.025 is as follows:} \\ \\ Z_{\alpha\text{/2}}=1.96 \end{gathered}[/tex]Now, we calculate the minimum value of the sample size as follows:
[tex]\begin{gathered} n=\left(\frac{Z_{\alpha\text{/2}}\cdot\sigma}{E}\right)^2 \\ \\ \text{ We replacing:} \\ \\ \:n=\left(\frac{1.96\cdot 700}{135}\right)^2 \\ \\ \:n=103.2858\cong104 \end{gathered}[/tex]The minimum sample size needed is 104