Respuesta :

Given:

[tex]\triangle ABC\sim\triangle PRT[/tex]

As the triangles are similar, the corresponding sides are proportional

[tex]\frac{AC}{PT}=\frac{BC}{RT}[/tex]

Given: AC = 15, BC = 12 , PT = 6

[tex]\begin{gathered} \frac{15}{6}=\frac{12}{RT} \\ \\ RT=\frac{6\cdot12}{15}=4.8 \end{gathered}[/tex]

We will find the area of the triangle ABC using the following ratio:

[tex]\frac{Area\triangle\text{ABC}}{Area\triangle\text{PRT}}=\frac{0.5\cdot AC\cdot BC\cdot\sin C}{0.5\cdot PT\cdot RT\cdot\sin T}[/tex]

The angle C is congruent to the angle T

So, substitute with the given values:

[tex]\begin{gathered} \frac{Area\triangle ABC}{24}=\frac{15\cdot12}{6\cdot4.8}=\frac{180}{28.8}=6.25 \\ \\ Area\triangle\text{ABC}=24\cdot6.25=150 \end{gathered}[/tex]

So, the answer will be:

The area of ΔABC = 150 mm²