Given the following recursive rule:
[tex]\begin{gathered} P_n=P_{n-1}_{}+10000 \\ P_o=26000 \end{gathered}[/tex]We will find the following:
(a) Calculate P₁ and P₂
so, the value of P₁ = 26000
and P₂ = P₁ + 10000 = 26000 + 10000 = 36000
P₂ = 36000
(b) Find an explicit formula for Pn
so,
[tex]\begin{gathered} P_n=P_o+d(n-1) \\ P_n=26000+10000(n-1) \end{gathered}[/tex](c) Use the explicit formula to predict the store's sales in 10 years.
so, substitute with n = 10
[tex]\begin{gathered} P_{10}=26000+10000\cdot(10-1)=26000+10000\cdot9 \\ \\ P_{10}=116000 \end{gathered}[/tex](d) When will the store's sales exceed $139,000?
so, we will substitute with Pn = 139000, then solve the equation to find (n)
[tex]\begin{gathered} 139000=26000+10000(n-1) \\ 10000(n-1)=139000-26000 \\ 10000(n-1)=113000 \\ n-1=\frac{113000}{10000}=11.3 \\ n=11.3+1=12.3 \end{gathered}[/tex]So, the answer will be after 12.3 years