Which of the following is the equation for the graph shown?a. x^2/144+y^2/95=1b. x^2/144-y^2/95=1c. x^2/95+y^2/144=1d. x^2/95-y^2/144=1

e follSOLUTION
Given the question in the image, the following are the solution steps to answer the question
STEP 1: Write the general equation of an ellipse
[tex]\frac{\mleft(x-h\mright)^2}{a^2}+\frac{(y-h)^2}{b^2^{}}=1[/tex]STEP 2: Identify the parameters
the length of the major axis is 2a
the length of the minor axis is 2b
[tex]\begin{gathered} 2a=24,a=\frac{24}{2}=12 \\ 2b=20,b=\frac{20}{2}=10 \end{gathered}[/tex]STEP 3: Get the equation of the ellipse
[tex]\begin{gathered} By\text{ substitution,} \\ \frac{(x-h)^2}{a^2}+\frac{(y-h)^2}{b^2}=1 \\ \frac{(x-0)^2}{12^2}+\frac{(y-0)^2}{10^2}=1=\frac{x^2}{144}+\frac{y^2}{100}=1 \end{gathered}[/tex]STEP 4: Pick the nearest equation from the options,
Hence, the equation of the ellipse in the image is given as:
[tex]\frac{x^2}{144}+\frac{y^2}{95}=1[/tex]OPTION A