Respuesta :

e follSOLUTION

Given the question in the image, the following are the solution steps to answer the question

STEP 1: Write the general equation of an ellipse

[tex]\frac{\mleft(x-h\mright)^2}{a^2}+\frac{(y-h)^2}{b^2^{}}=1[/tex]

STEP 2: Identify the parameters

the length of the major axis is 2a

the length of the minor axis is 2b

[tex]\begin{gathered} 2a=24,a=\frac{24}{2}=12 \\ 2b=20,b=\frac{20}{2}=10 \end{gathered}[/tex]

STEP 3: Get the equation of the ellipse

[tex]\begin{gathered} By\text{ substitution,} \\ \frac{(x-h)^2}{a^2}+\frac{(y-h)^2}{b^2}=1 \\ \frac{(x-0)^2}{12^2}+\frac{(y-0)^2}{10^2}=1=\frac{x^2}{144}+\frac{y^2}{100}=1 \end{gathered}[/tex]

STEP 4: Pick the nearest equation from the options,

Hence, the equation of the ellipse in the image is given as:

[tex]\frac{x^2}{144}+\frac{y^2}{95}=1[/tex]

OPTION A