The height of a triangle is two more than three times the base. Determine the dimensions that will give a total area of 28 yards squared. What is the minimum area of such a triangle

Respuesta :

h = 3b+2
A = (h*b)/2     28 = (3b+2)b/2     56 = 3b²+2b    0 = 3b² + 2b - 56

⊕[tex] \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \\ \\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} x^{123} \leq \geq \pi \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}}[/tex]
ω
 l