Respuesta :
y = -x^2 + x + 2
y = -x + 3
-x + 3 = -x^2 + x + 2
x^2 - x - 2 - x + 3 = 0
x^2 -2x + 1 = 0
(x - 1)(x - 1) = 0
x - 1 = 0 y = -x + 3
x = 1 y = -1 + 3
y = 2
solutions are : (1,2) , (1,2)
y = -x + 3
-x + 3 = -x^2 + x + 2
x^2 - x - 2 - x + 3 = 0
x^2 -2x + 1 = 0
(x - 1)(x - 1) = 0
x - 1 = 0 y = -x + 3
x = 1 y = -1 + 3
y = 2
solutions are : (1,2) , (1,2)
Answer:
(1,2) , (1,2)
Step-by-step explanation:
Given : [tex]y = -x^2 + x + 2[/tex]
[tex]y = -x + 3[/tex]
To Find : Which represents the solution(s) of the graphed system of equations
Solution:
[tex]y = -x^2 + x + 2[/tex]
[tex]y = -x + 3[/tex]
Now, to find the solution
[tex]-x + 3 = -x^2 + x + 2[/tex]
[tex]x^2 - x - 2 - x + 3 = 0[/tex]
[tex]x^2 -2x + 1 = 0[/tex]
[tex](x - 1)(x - 1) = 0[/tex]
So, [tex]x = 1,1[/tex]
Substitute the value of x
[tex]y = -x + 3[/tex]
[tex]y = -1 + 3[/tex][tex]y = 2[/tex]
Thus the solutions are : (1,2) , (1,2)